Sparse Block–Jacobi Matrices with Exact Hausdorff Dimension

نویسندگان

  • S. L. Carvalho
  • D. H. U. Marchetti
چکیده

We show that the Hausdorff dimension of the spectral measure of a class of deterministic, i. e. nonrandom, block–Jacobi matrices may be determined exactly, improving a result of Zlatoš (J. Funct. Anal. 207, 216-252 (2004)).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse Potentials with Fractional Hausdorff Dimension

Abstract. We construct non-random bounded discrete half-line Schrödinger operators which have purely singular continuous spectral measures with fractional Hausdorff dimension (in some interval of energies). To do this we use suitable sparse potentials. Our results also apply to whole line operators, as well as to certain random operators. In the latter case we prove and compute an exact dimensi...

متن کامل

Random Series in Powers of Algebraic Integers: Hausdorff Dimension of the Limit Distribution

We study the distributions θ,p of the random sums 3 " ε n θn, where ε " , ε # ,... are i.i.d. Bernoulli-p and θ is the inverse of a Pisot number (an algebraic integer β whose conjugates all have moduli less than 1) between 1 and 2. It is known that, when p ̄ .5, θ,p is a singular measure with exact Hausdorff dimension less than 1. We show that in all cases the Hausdorff dimension can be expresse...

متن کامل

Structured preconditioners for nonsingular matrices of block two-by-two structures

For the large sparse block two-by-two real nonsingular matrices, we establish a general framework of practical and efficient structured preconditioners through matrix transformation and matrix approximations. For the specific versions such as modified block Jacobi-type, modified block GaussSeidel-type, and modified block unsymmetric (symmetric) Gauss-Seidel-type preconditioners, we precisely de...

متن کامل

Parallel solution of large sparse eigenproblems using a Block-Jacobi-Davidson method Parallele Lösung großer dünnbesetzter Eigenwertprobleme mit einem Block-Jacobi-Davidson Verfahren Masterarbeit

This thesis deals with the computation of a small set of exterior eigenvalues of a given large sparse matrix on present (and future) supercomputers using a Block-JacobiDavidson method. The main idea of the method is to operate on blocks of vectors and to combine several sparse matrix-vector multiplications with different vectors in a single computation. Block vector calculations and in particul...

متن کامل

An Adaptive Sparse Grid Semi-Lagrangian Scheme for First Order Hamilton-Jacobi Bellman Equations

We propose a semi-Lagrangian scheme using a spatially adaptive sparse grid to deal with non-linear time-dependent Hamilton-Jacobi Bellman equations. We focus in particular on front propagation models in higher dimensions which are related to control problems. We test the numerical efficiency of the method on several benchmark problems up to space dimension d = 8, and give evidence of convergenc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009